

ECM Duro-Bond PVC Sheet Lining

Description

Duro-Bond PVC Lining is a flexible lining material of extruded plasticized polyvinyl chloride (PVC) specifically developed for corrosion resistance and adhesive bonding to metals, concrete, and FRP. PVC is a thermoplastic resin that is melt flow processible. Duro-Bond PVC sheet lining is available in thicknesses 90 mils (2.3 mm) and 180 mils (4.6 mm).

Uses

Duro-Bond PVC Lining offers resistance to a variety of chemicals including oxidizing acids such as chromic and nitric, and provides excellent abrasion resistance.

Advantages

The elasticity of **Duro-Bond PVC Lining** allows thermal contraction and expansion without cracking and also minimizes the possible damaging effects of mechanical abuse. Because of its flexibility, bonding is obtained without difficulty, even on intricate contours.

Duro-Bond PVC Lining is applied in sheet form with a smooth, polished surface finish, which makes the lining easy to clean and offers good solution flow. In addition, the electrical insulating properties of **Duro-Bond PVC Lining** are of value in many applications involving electrolytic reactions.

Since heating or curing is not required, **Duro-Bond PVC Lining** can be shop or field installed.

Service Temperature

The maximum continuous service temperature for which Duro-Bond PVC Lining is recommended is 160°F (70°C). Corrosion resistant brick sheathing joined with one of the Electro Chemical Manufacturing corrosion resistant cements is used in conjunction with **Duro-Bond PVC Lining** when excessive temperatures are present. A 4" brick sheathing will provide a temperature drop of approximately 50°F, and an 8" brick lining will provide a drop of about 100°F. When carbon brick are used the temperature drop will be somewhat less.

Chemical Resistance

The information listed may be considered as a basis for recommendation, but not as a guarantee, unless sold and installed by Electro Chemical Manufacturing. For resistance of **Duro-Bond PVC** to chemicals not listed, contact us at 330-313-6372, knightmaterials.com, or info@knightmaterials.com.

Karata Bathan			1	Canada Oil	Δ	00
Key to Rating				Coconut Oil	Any	90 160
LR = Limited Recom				Copper Salts	Any	Max.
NR = Not Recommend	iea	Max		Chemical	Conc. (%)	Temp(°F)
Chaminal	Cama (0/)	Max.		Corn Syrup		120
<u>Chemical</u> Acetic Acid	Conc. (%)	Temp(°F)		Cresylic Acid	Any 50	120
Acetic Acid Glacial	10 100	70 NR		Dextrose	Any	160
Acetone		NR NR		Disodium Phosphate	Any	150
	Any			Ether	Any	NR
Allyl Alcohol Aluminum Hydroxide	Any	90 160		Ethyl Acetate	Any	NR
Aluminum Salts	Any	130		Ethyl Alcohol	Any	100
	Any	160		Ethylene Dichloride	Any	NR
Ammonia Gas (Dry)	Any	NR		Ethylene Glycol	Any	120
Ammonia (Liq-Anhydro		160		Fatty Acids	Any	90
Ammonium Hydroxide				Ferric Salts	Any	160
Ammonium Hydroxide		100 90		Ferrous Salts	Any	160
Amyl Alcohol Aniline	Any	90 NR		Fluoboric Acid	Any	160
	Any	NR		Fluorine Gas	Any	70
Aniline Hydrochloride	Any	NR NR		Fluorosilisic Acid	Any	160
Aqua Regia Arsenic Acid	Any 80	120		Formaldehyde	Any	90
				Formic Acid	Any	120
Antimony Trichloride	Any	160		Gasoline	Any	70
Barium Chloride	Any	160		Glucose	Any	160
Barium Hydroxide Barium Sulfate	Any	160 160		Glycol	Any	70
Barium Sulfide	Any	120		Hydrobromic Acid	20	130
	Any	NR		Hydrochloric Acid	10	160
Benzaldehyde Benzene	Any	NR		Hydrochloric Acid	20	130
Benzene Sulfonic Acid	Any I Any	NR		Hydrochloric Acid	35	NR
Benzoic Acid	Any	120		Hydrofluoric Acid	10	150
Black Liquor	Any	90		Hydrofluoric Acid	48	NR
Boric Acid	Any	160		Hydrogen Peroxide	3	90
Bromine (Liquid)	Any	NR		Hydrogen Peroxide	50	NR
Bromine (Water)	Any	120		Hydrogen Sulfide	Any	120
Bromic Acid	Any	120		Hydroquinone	Any	90
Butyl Alcohol	Any	90		lodine	Any	NR
Butyric Acid	Any	NR		Kerosene	Any	120
Calcium Chloride	Any	160		Lactic Acid	28	120
Calcium Hypochlorite	Any	120		Magnesium Hydroxide		160
Calcium Hydroxide	Any	160		Magnesium	Any	160
Calcium Nitrate	Any	160		Maleic Acid	Any	160
Calcium Sulfate	Any	160		Methyl Alcohol	Any	90
Carbon Bisulfide	Any	NR		Methyl Ethyl Ketone	Any	NR
Carbon Tetrachloride	Any	NR		Mineral Oils	Any	120
Castor Oil	Any	90		Molasses	Any	160
Chlorine Dioxide	15	90		Nickel Salts	Any	160
Chlorine Gas (Dry)	Any	120		Nitric Acid	10	160
Chlorine Gas (Wet)	Any	70-LR		Nitric Acid	30	130
Chlorine Water	Any	90		Nitric Acid	68	NR
Chloracetic Acid	Any	NR		Nitric, HF Acid Mix	15-4	160
Chlorobenzene	Any	NR		Nitric, HF Acid Mix	50-10	70
Chromic Acid	10	160		Nitro Benzene	Any	NR
Chromic Acid	30	130		Nitrous Oxide	Any	NR
Chromic Acid	40	90		Oleic Acid	Any	160
Citric Acid	25	120		Oleum	Any	NR
			ī		=	

			•			
Oxalic Acid	Any	160		Sodium Hydroxide	25	130
Ozone	Any	120-LR		Sodium Hydroxide	50	NR
Phosphorous (Yellow)	Any	NR				Max.
Phosphorous Pentoxide	Any	NR		<u>Chemical</u>	Conc. (%)	Temp(°F)
		Max.		Sodium Hypochlorite	16 Cl ₂	70
<u>Chemical</u> <u>Co</u>	nc. (%)	Temp(°F)		Sodium Nitrate	Any	160
Phosphorous Trichloride	Any	NR		Sodium Sulfide	Any	120
Perchloric Acid	10	120		Sodium Sulfite	Any	160
Perchloric Acid	70	NR		Sodium Thiosulfate	Any	160
Phenol	Any	NR		Stannic Chloride	Any	160
Phosphoric Acid	85	160		Stannous Chloride	25	100
Picric Acid	Any	NR		Stearic Acid	Any	70
Potassium Acid Sulfate	Any	160		Sulfur Dioxide Gas	Any	120
Potassium Bromate	Any	160		Sulfuric Acid	10	160
Potassium Bromide	Any	160		Sulfuric Acid	35	130
Potassium Chlorate	Any	160		Sulfuric Acid	50	100
Potassium Dichromate	50	NR		Sulfuric Acid	80	NR
Potassium Ferricyanide	Any	160		Sulfuric Acid	99	NR
Potassium Fluoride	Any	160		Tannic Acid	Any	120
Potassium Hydroxide	10	160		Tartaric Acid	Any	120
Potassium Hydroxide	50	120		Tetraethyl Lead	Any	NR
Potassium Nitrate	Any	160		Turpentine	Any	70-LR
Potassium Permanganate	10	120		Toluene	Any	NR
Potassium Permanganate	25	NR		Trichloroethylene	Any	NR
Potassium Sulfate	Any	160		Trisodium Phosphate	Any	160
Potassium Sulfide	Any	160		Urea	Any	160
Potassium Thiosulfate	Any	160		Water	Any	160
Propyl Alcohol	Any	120		White Liquor	Any	90
Selenic Acid	Any	70		Zinc Salts	Any	160
Silver Nitrate	Any	160				
Soaps	Any	160		Plating Solutions for:		
Sodium Acid Sulfate	Any	160		Cadmium, Copper, Go	ld,	
Sodium Bisulfite	Any	160		Lead, Nickel, Rhodium	,	
Sodium Chlorate	Any	160		Tin and Zinc	Any	160
Sodium Fluoride	Any	160		Chromium	Any	140
Sodium Hydroxide	10	160				

Physical Properties

The normal physical properties of the E-CTFE sheeting are shown in the following table:

Thermoplastic polymer
Black
None
160°C
70°C
1.42 g/cm3
45 -55
20 0%
Insoluble
None
D 95
< 0.01
V-0
7 - 8 x 10 ⁻⁵

Application

The installation of a completely homogeneous lining with **Duro-Bond PVC Lining** is carried out in two steps:

- After proper cleaning and priming of the surface to be lined, **Duro-Bond PVC Lining** is cemented onto the surface, using a three part adhesive system, consisting of primers for the substrate and vinyl surfaces and a bonding cement. Tensile strength bonds between the lining and the lined surface in the range of 200 psi and peel values up to 50 lbs. per lineal inch are obtained.
- The butt and corner joints formed between the individual **Duro-Bond PVC Lining** sheets are then sealed by using **Duro-Bond PVC Lining** sealing strips. These sealing strips are heat welded to the seams with a special hot air welding gun, resulting in a homogeneous lining which does not require any vulcanization or other curing.

Method of Testing

All lined surfaces are visually inspected for surface defects. Any special dimensional tolerances required after lining are also checked. All lined areas are then spark tested for pinhole leaks using a dielectric spark tester adjusted to 10,000 volts. The tester is moved constantly and quickly over the lining surface to prevent a burn through.

Repair Procedures

Duro-Bond PVC sheet lining can be shop or field repaired. The repairs to defective or damaged areas in the sheet lining are accomplished by cutting out the faulty area, grinding or grit blasting the substrate surface, preparing a piece of sheet of the same dimension, cementing it into position and subsequently welding the joints as described under Application. The repaired area is then inspected and spark tested to insure lining integrity.

Additional Information

For additional technical or safety information, contact us at 330-313-6372, knightmaterials.com, or info@knightmaterials.com.

Knight Material Technologies, LLC 5385 Orchard View Dr. SE East Canton, OH 44730

The data provided herein falls within the normal range of product properties, but they should not be used to establish specification limits nor used alone as the basis of design. Electro Chemical Manufacturing assumes no obligation or liability for any advice furnished by it or for results obtained with respect to these products. All such data and advice is provided gratis and Buyer assumes sole responsibility for results obtained in reliance thereon.

