

ECM Duro-Bond Polypropylene Sheet Lining

Description

Duro-Bond Polypropylene is a laminated sheet of polypropylene and natural rubber that forms an excellent chemically resistant membrane that is readily bonded to steel, concrete, or FRP substrates. Polypropylene is a thermoplastic resin that is melt flow processible. Duro-Bond Polypropylene sheet lining is available in thicknesses of 90 mils (2.3 mm) and 125 mils (3.0 mm).

Uses

Duro-Bond Polypropylene is particularly resistant to attack by mineral acids including the oxidizing acids, such as nitric and sulfuric.

Duro-Bond Polypropylene can be bonded to various substrates. It-is used for lining plating tanks, acid etch tanks, pickling tanks, process vessels, neutralization tanks, drip pans, ventilation hoods and ducts.

Advantages

The polypropylene layer, which is exposed to the solution being processed, provides the wide range of chemical resistance typical of polypropylene material. The natural rubber layer provides a flexible bond to the substrate which allows for the differences in thermal expansion.

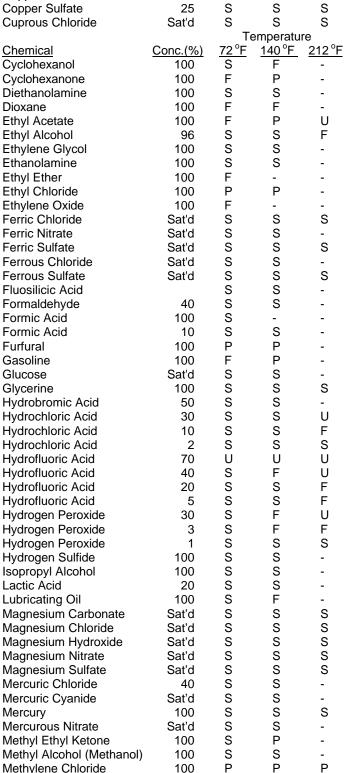
Since curing or vulcanizing is not required, **Duro-Bond Polypropylene** can be shop or field installed. **Duro-Bond Polypropylene** has good non-stick properties and is highly recommended as a lining material for chutes and hoppers.

Service Temperature

The maximum continuous service temperature for which **Duro-Bond Polypropylene** can be used is 212°F (100°C). Corrosion resistant brick sheathing joined with one of the Electro Chemical Manufacturing corrosion resistant cements is used in conjunction with **Duro-Bond Polypropylene** when excessive temperatures are present. A 4" thick brick sheathing will provide a temperature drop of approximately 50 °F and an 8" brick lining will provide a drop of approximately 100 °F. When carbon brick are used the temperature drop will be somewhat less.

Chemical Resistance

The information listed may be considered as a basis for recommendation, but not as a guarantee, unless sold and installed by **Electro Chemical Manufacturing.** For resistance of **Duro-Bond Polypropylene** to chemicals not listed, contact us at 330-313-6372, knightmaterials.com, or info@knightmaterials.com.


The following table lists a number of chemicals at various concentrations and indicates the maximum operating temperatures at which **Duro-Bond Polypropylene** may be recommended in contact with these chemicals.

S = Satisfactory

- F = Fair
- P = Poor
- U = Unsatisfactory
- = No Information

		Т	emperatu	Iro	Distherelemine	
Chemical	<u>Conc.(%)</u>	<u>72°F</u>	<u>140°F</u>	<u>212°F</u>	Diethanolamine	
Acetic Acid (glacial)	<u>00110.(78)</u> 97	<u>72 F</u> S	<u>140 P</u> F	P	Dioxane	
Acetic Acid (glacial)	97 80	S	F	P	Ethyl Acetate	
	80 40	S	F	P	Ethyl Alcohol	
Acetic Acid	-	S		F	Ethylene Glycol	
Acetic Acid	10		S		Ethanolamine	
Acetone	100	S	S	-	Ethyl Ether	
Aluminum Chloride	Sat'd	S	S	S	Ethyl Chloride	
Aluminum Fluoride	Sat'd	S	S	S	Ethylene Oxide	
Aluminum Sulfate	Sat'd	S	S	S	Ferric Chloride	S
Ammonia gas (dry)	100	S	S	S	Ferric Nitrate	S
Ammonium Carbonate	Sat'd	S	S	S	Ferric Sulfate	S
Ammonium Chloride	Sat'd	S	S	S	Ferrous Chloride	S
Ammonium Fluoride	Sat'd	S	S	S S S	Ferrous Sulfate	S
Ammonium Hydroxide	10	S	S	S	Fluosilicic Acid	
Ammonium Nitrate	Sat'd	S	S	S	Formaldehyde	
Ammonium Sulfate	Sat'd	S	S	S F	Formic Acid	
Amyl Alcohol	100	S	S	F	Formic Acid	
Aniline	100	S	S	S	Furfural	
Antimony Chloride	Sat'd	S	S	F	Gasoline	
Aqua Regia		F	F	U	Glucose	S
Barium Carbonate	Sat'd	S	S	S	Glycerine	
Barium Chloride	Sat'd	S	S	S	Hydrobromic Acid	
Barium Hydroxide	Sat'd	S	S	S	Hydrochloric Acid	
Barium Sulfate	Sat'd	S	S	S	Hydrochloric Acid	
Benzene	100	F	Ū	Ū	Hydrochloric Acid	
Benzyl Alcohol	100	S	Š	P	Hydrofluoric Acid	
Boric Acid	Sat'd	ŝ	S	S	Hydrofluoric Acid	
Brine	Sat'd	S	S	S	Hydrofluoric Acid	
Bromine (liquid)	100	P	-	-		
Bromine Water	Sat'd	P	-	-	Hydrofluoric Acid	
Butyl Acetate	100	F	U	U	Hydrogen Peroxide	
Calcium Carbonate	Sat'd	S	S	S	Hydrogen Peroxide	
Calcium Chlorate	Sat'd	S	S	S	Hydrogen Peroxide	
Calcium Chloride	Sat'd	S	S	S	Hydrogen Sulfide	
Calcium Hydroxide	Sat'd	S	S	S	Isopropyl Alcohol	
Calcium Hypochlorite	Sat'd	S	F	F	Lactic Acid	
Calcium Nitrate	Sat'd	S	S	S	Lubricating Oil	~
		S	S	S	Magnesium Carbonate	S
Calcium Sulfate	Sat'd			3	Magnesium Chloride	S
Carbon Disulfide	100	F	U	-	Magnesium Hydroxide	S
Carbon Tetrachloride	100	U	U	U	Magnesium Nitrate	S
Carbonic Acid	100	S	S	S	Magnesium Sulfate	S
Chlorine (liquid)	100	P	Р	-	Mercuric Chloride	
Chlorosulfonic Acid	100	U	U _1	U	Mercuric Cyanide	S
Chromic Acid	80	S	F_{-1}^1	Р	Mercury	
Chromic Acid	50	S	F ¹	P	Mercurous Nitrate	S
Chromic Acid	10	S	S	F ¹	Methyl Ethyl Ketone	
Citric Acid	100	S	S	S	Methyl Alcohol (Methanol)	
Copper Chloride	Sat'd	S	S	S	Methylene Chloride	
Copper Cyanide	Sat'd	S	S	S	Mineral Oil	
Copper Nitrate	Sat'd	S	S	S	Monochloroacetic Acid	
					•	

100

100

S

S

Sat'd

S

S

-

Copper Fluoride

F

F

S

S

Electro Chemical Manufacturing Duro-Bond Polypropylene Lining

Naphtha	100	S	-	-	Sodium Bicarbonate	Sat'd	S	S	S
Naphthalene	100	S	S	S	Sodium Bisulfate	Sat'd	S	S	S
Nickel Chloride	Sat'd	S	S	S					
Nickel Nitrate	Sat'd	S	S	S			Τe	emperatu	ire
Nickel Sulfate	Sat'd	S	S	S	Chemical	Conc.(%)	<u>72 °F</u>	<u>140 °F</u>	<u>212 °F</u>
Nitric Acid ²	Fuming	Р	Р	U	Sodium Carbonate	Sat'd	S	S	S
	0	Τe	emperatu	re	Sodium Chlorate	Sat'd	S	S	-
Chemical	<u>Conc.(%)</u>	<u>72 °F</u>	<u>140°F</u>	212°F	Sodium Chloride	Sat'd	S	S	S
Nitric Acid ²	70	S	Р	U	Sodium Chlorite	20	S	S	F
Nitric Acid ²	50	S	F	Р	Sodium Cyanide	Sat'd	S	S	S
Nitric Acid ²	15	S	F	Р	Sodium Dichromate ²	Sat'd	S	S	S
Nitric Acid ²	10	S	S	F	Sodium Ferricyanide	Sat'd	S	S	S S S
Nitro Benzene	100	S	S	-	Sodium Hydroxide	50	S	S	S
Oils (essential)	100	S	S	-	Sodium Hypochlorite	20	S	S	F
Oxalic Acid (aqueous)	50	S	F	-	15% Avg. Cl ₂				
Phenol	100	S	S	F	Sodium Nitrate	Sat'd	S	S	S
Phosphoric Acid	95	S S	S	S	Sulphurous Acid	Sat'd	S	S	-
Phosphoric Acid	85	S	S	S	Sulfuric Acid ²	98	F	U	U
Phosphoric Acid	50	S	S	S	Sulfuric Acid ²	60	S	S	Р
Phosphoric Acid	25	S	S	S	Sulfuric Acid ²	50	S	S	Р
Plating Solutions:		S	S	-	Sulfuric Acid ²	10	S	S	S
(Concentrations as norn	nally				Sulfuric Acid ²	2	S	S	S
used in the plating indu	ustry)				Tannic Acid	10	S	S	-
Potassium Salts:					Tetrahydrofuran	100	Р	Р	Р
(Same as Sodium					Trichloroacetic	10	S	S	-
Salts listed below)					Triethanolamine	100	S	S	-
Propyl Alcohol	100	S	S	-	Trichloroethylene	100	Р	Р	Р
Propionic Acid	100	F	Р	U	Urea	Sat'd	S	S	S
Pyridine	100	S	-	-	Xylene	100	Р	Р	Р
Silver Nitrate	Sat'd	S	S	-	Zinc Chloride	Sat'd	S	S	S
Sodium Acetate	Sat'd	S	S	S	Zinc Sulfate	Sat'd	S	S	-

¹ Slight discoloration after 10 days
² In combinations of Sulfuric, Nitric and Sodium Dichromate a corrosion stress crack effect is noticed at 130° F

Physical Properties

The normal physical properties of polypropylene sheeting are shown in the following table:

ColorOfOdorNaMelting point16Upper Service Temperature10Density (23°C)0.9Tensile Strength (N/mm²)33Elongation at Break35Solubility in waterInsExplosion limitsNaHardness DurometerDWater absorption< 0FlammabilityHE	nermoplastic polymer ff White one $65^{\circ}C$ $90^{\circ}C$ $91g/cm^{3}$ 3 50-600% soluble one 95-100 0.03 B/V-2 5×10^{-5}
---	--

Application

The method of application is as follows:

- 1. The surface to be lined is properly cleaned and grit blasted to a white metal finish to provide a suitable surface for bonding. (See Electro Chemical Manufacturing Technical Bulletin #1, "Specification for Welded Steel Tanks, Stacks, Ducts or Other Fabricated Equipment for Protective Linings and/or Coatings".)
- 2. The Duro-Bond Polypropylene laminate is cut into panels to cover the entire area to be lined with a minimum amount of joints to be welded.
- 3. The panels are then cemented into position and the seams welded with with polypropylene rod and polypropylene cap strip using a thermoplastic welding gun.

Tensile strength bonds between the lining and lined surface in the range of 350 psi and peel values of up to 65 lbs. per lineal inch are obtained, per ASTM D903 @ 180° angle.

Method of Testing

All lined surfaces are visually inspected for surface defects. Any special dimensional tolerances required after lining are also checked.

All lined areas are then spark tested for pinhole leaks using a dielectric spark tester adjusted to 10,000 volts. The tester is moved constantly and quickly over the lining surface to prevent a burn through.

Repair Procedure

Duro-Bond Polypropylene sheet lining can be shop or field repaired. The repairs to defective or damaged areas in the sheet lining are accomplished by cutting out the faulty area, grinding or grit blasting the substrate surface, preparing a piece of sheet of the same dimension, cementing it into position and subsequently welding the joints as described under Application. The repaired area is then inspected and spark tested to insure lining integrity.

Additional Information

For additional technical or safety information, contact us at 330-313-6372, knightmaterials.com, or info@knightmaterials.com.

Knight Material Technologies, LLC 5385 Orchard View Dr. SE East Canton, OH 44730

The data provided herein falls within the normal range of product properties, but they should not be used to establish specification limits nor used alone as the basis of design. Electro Chemical Manufacturing assumes no obligation or liability for any advice furnished by it or for results obtained with respect to these products. All such data and advice is provided gratis and Buyer assumes sole responsibility for results obtained in reliance thereon.

